Identification of plant genetic loci involved in a posttranscriptional mechanism for meiotically reversible transgene silencing.
نویسندگان
چکیده
Numerous reports describe phenomena of transgene silencing in plants, yet the underlying genetic and molecular mechanisms are poorly understood. We observed that regeneration of Arabidopsis thaliana plants transgenic for the rolB gene of Agrobacterium rhizogenes results in a selection for transgene silencing. Transgene silencing could be monitored in this system by reversion of the visible RolB phenotype. We report a phenotypic, molecular, and genetic characterization of a meiotically reversible transgene silencing phenomenon observed in a rolB transgenic line. In this line, the rolB gene is expressed strongly and uniformly in seedlings, but in the course of further development, the rolB gene is silenced erratically at a frequency that depends on the dosage of rolB. The silenced state is mitotically stable, while complete resetting of rolB gene expression occurs in seedlings of the following generation. The silencing of rolB correlates with a dramatic reduction of steady-state rolB transcripts, while rolB nuclear run-off transcripts are only moderately reduced. Therefore, rolB gene silencing seems to act predominantly at the posttranscriptional level. The process of rolB gene silencing was found to be affected by two extragenic modifier loci that influence both the frequency and the timing of rolB gene silencing during plant development. These genetic data demonstrate a direct involvement of defined plant genes in this form of gene silencing.
منابع مشابه
An RNA-Dependent RNA Polymerase Gene in Arabidopsis Is Required for Posttranscriptional Gene Silencing Mediated by a Transgene but Not by a Virus
Posttranscriptional gene silencing is a defense mechanism in plants that is similar to quelling in fungi and RNA interference in animals. Here, we describe four genetic loci that are required for posttranscriptional gene silencing in Arabidopsis. One of these, SDE1, is a plant homolog of QDE-1 in Neurospora crassa that encodes an RNA-dependent RNA polymerase. The sde1 mutation was specific for ...
متن کاملA Counterdefensive Strategy of Plant Viruses Suppression of Posttranscriptional Gene Silencing
Posttranscriptional gene silencing (PTGS) in plants inactivates some aberrant or highly expressed RNAs in a sequence-specific manner in the cytoplasm. A silencing mechanism similar to PTGS appears to function as an adaptive antiviral response. We demonstrate that the P1/HC-Pro polyprotein encoded by tobacco etch virus functions as a suppressor of PTGS. A locus comprised of a highly expressed be...
متن کاملPost-transcriptional cosuppression of beta-1,3-glucanase genes does not affect accumulation of transgene nuclear mRNA.
Silencing of a Nicotiana plumbaginifolia beta-1,3-glucanase (gn1) transgene in tobacco line T17 occurs in homozygous and in haploid plants with one transgene locus dosage per chromosome set. We have previously shown that the silent state is manifested by a reduced gn1 steady state mRNA level and results from a post-transcriptional process that is under developmental control in homozygous T17 pl...
متن کاملThe Effect of Chalcone Isomerase (Chi) Gene Silencing on Flavonoids Content in Petunia hybrida using RNAi Technology
have been bred with altered flower color using genetic engineering approaches. One of the most effective applications is the reduction of flower pigments by suppression of involved enzymes in their biosynthesis pathways. RNA interference (RNAi) has provided an effective tool for the knock down of genes involved in the production of flower pigments. In this study, a chi-RNAi construct was design...
متن کاملPosition-dependent methylation and transcriptional silencing of transgenes in inverted T-DNA repeats: implications for posttranscriptional silencing of homologous host genes in plants.
Posttranscriptional silencing of chalcone synthase (Chs) genes in petunia transformants occurs by introducing T-DNAs that contain a promoter-driven or promoterless Chs transgene. With the constructs we used, silencing occurs only by T-DNA loci which are composed of two or more T-DNA copies that are arranged as inverted repeats (IRs). Since we are interested in the mechanism by which these IR lo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 91 12 شماره
صفحات -
تاریخ انتشار 1994